Water Gas Shift Reaction: This is a way to produce hydrogen industrially.

This reaction is **exothermic** and its ΔH value is **negative**. Therefore, energy is produced on the right side of the equation.

 $CO_{(g)} + H_2O_{(g)} \leftarrow \rightarrow CO_{2(g)} + H_{2(g)} + heat$ <--- Notice that "+ heat" is now added in

Disruption to	Which direction	Will this	Explain why: which reaction rate is changing (forward
Equlibrium	does the	increase or	or reverse), and why?
	equilibrium shift?	decrease?	
Remove CO ₂ gas	Right	H ₂	Reverse reaction rate slows due to less CO ₂
		Increase	Forward reaction therefore now favored
Add CO gas	Right	H ₂	Forward reaction rate speeds up due to more CO
		Increase	
Remove H ₂ gas	Right	CO ₂	Reverse reaction slows due to less H ₂
		Increase	Forward reaction therefore now favored
Add H ₂ O gas	Right	СО	Forward reaction rate speeds up to to more H_2O
		Decrease	
Increase	Left	CO ₂	More heat speeds up reverse reaction
temperature		Decrease	Reverse reaction causes things to cool back down
Cool the reactor	Right	H ₂	Less heat slows down reverse reaction
(reduce temp.)		Increase	FW reaction dominates and heats things back up

How can you setup this equilibrium system to create as much H₂ gas as possible?

Cause right shift: add more CO and H₂O, remove CO₂ and H₂, and run reaction at a low temperature.

Haber Process: Ammonia is difficult to produce from nitrogen gas, but Fritz Haber figured out how to do it using Le Chatelier's Principle. The reaction is **exothermic**, so ΔH is negative and energy is produced on the product side.

$V_{2(g)} + 3H_{2(g)} \leftarrow \rightarrow 2NH_{3(g)} + heat$	< Notice that "+ heat" is now added in
---	--

Disruption to	Which direction	Will this increase or	Explain why: which reaction rate is changing
Equlibrium	does the	decrease?	(forward or reverse), and why?
	equilibrium shift?		
Increase pressure	Right	H ₂	Shifts to the side with less moles of gas (right),
(count gas moles)		Decrease	Results in lower pressure at new equilibrium
Decrease pressure	Left	NH ₃	Shifts to the side with more moles of gas (left),
(count gas moles		Decrease	Results in higher pressure at new equilibrium
Increase	Left	N ₂	More heat speeds up reverse reaction
temperature		Increase	
Decrease	Right	H ₂	Less heat slows down reverse reaction,
temperature		Decrease	so forward reaction will now be dominant
Add N ₂ gas	Right	Temperature	More N ₂ speeds up forward reaction;
		Increase	Forward reaction produces heat to increase Temp
Remove H ₂ gas	Left	Temperature	Forward reaction slows due to less H ₂ ;
		Decrease	Reverse reaction dominates, absorbing heat
Add NH ₃ gas	Left	Temperature	Reverse reaction speeds up due to more NH ₃ ;
		Decrease	Reverse reaction absorbs heat and cools the temp.
Remove NH ₃ gas	Right	H ₂	Reverse reaction slows down due to less NH ₃ ;
		Decrease	Forward reaction is therefore now favored.

How can you setup this equilibrium system to produce the most NH₃ product?

Shift the reaction to the right: add more N₂ and H₂, increase the pressure (compress more gas into a smaller volume), remove the NH₃ as it is being produced to slow the reverse reaction, and run the reaction at a cold temperature to keep the reverse reaction slow.

Use the graph to answer the questions:

 $2SO_2 + O_2 \leftrightarrow 2SO_3$

- 1) Draw a box around the part(s) of the graph when the system is at equilibrium.
- 2) During the other part of the graph, is the reaction shifting left or shifting right? How do you know?

RIGHT: because SO $_3$ is increasing, while SO $_2$ and O $_2$ decrease.

During the equilibrium shift, which reaction rate is faster?
Forward reaction is faster than reverse reaction.

Use the graph to answer the questions.

 $N_{2(g)} + 3H_{2(g)} \leftarrow \rightarrow 2NH_{3(g)}$

Draw a box around the part(s) of the graph when the system is at equilibrium.

What disturbance was made to the system? Label this part of the graph. H_2 is added (seen where the the line spikes upward)

What direction does the graph shift as a result of the disturbance? Poor wording here (sorry)... the H_2 graph line goes down, which means H_2 is decreasing. This means the equilibrium is shifting right.

Circle and label the part of the graph when the equilibrium is shifting.

Is the reaction shifting left or right? RIGHT

Explain how you know which way the reaction shifted: talk about which concentration are increasing or decreasing. The chemicals on the left side (H_2 and N_2) are decreasing / being used up. The substance on the right (NH_3) is increasing.

Which reaction rate is faster while the reaction is initially at equilibrium? (Huge hint: this is a trick question) Neither. The reaction rates are equal at equilibrium.

Which reaction rate is faster during the shift? Forward reaction.

What is the cause of the change in reaction rate? (Remember what factors that affect reaction rates...) Higher concentration of H_2 .

 H_2 is a reactant for the forward reaction. Increasing reactant concentration increases reaction rate, because it increases the likelihood of collisions between H_2 and N_2 .

