PLTW Engineering Formula Sheet 2014 (v14.2)

1.0 Statistics

Mean

$$\mu = \frac{\sum x_i}{N}$$

(1.1a)

$$\overline{\mathbf{x}} = \frac{\sum x_i}{n}$$
 (1.1b)

 μ = population mean

 \bar{x} = sample mean

 $\sum x_i = \text{sum of all data values } (x_1, x_2, x_3, ...)$

N = size of population

n = size of sample

Median

Place data in ascending order.

If N is odd, median = central value

(1.2)

If N is even, median = mean of two central values

N = size of population

Range (1.5)

Range = $x_{max} - x_{min}$ (1.3)

 $x_{max} = maximum data value$

 x_{min} = minimum data value

Mode

Place data in ascending order.

Mode = most frequently occurring value

(1.4)

If two values occur with maximum frequency the data set is *bimodal*.

If three or more values occur with maximum frequency the data set is *multi-modal*.

Standard Deviation

$$\sigma = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}}$$

(Population)

(1.5a)

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

(Sample)

(1.5b)

 σ = population standard deviation

s = sample standard deviation

 x_i = individual data value ($x_1, x_2, x_3, ...$)

 μ = population mean

 \bar{x} = sample mean

N = size of population

n = size of sample

2.0 Probability

Frequency

$$f_x = \frac{n_x}{n}$$

(2.1)

f_x = relative frequency of outcome x

 n_x = number of events with outcome x

n = total number of events

Binomial Probability (order doesn't matter)

$$P_k = \frac{n!(p^k)(q^{n-k})}{k!(n-k)!}$$

(2.2)

P_k = binomial probability of k successes in n trials

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Independent Events

 $P (A \text{ and } B \text{ and } C) = P_A P_B P_C$

(2.3)

P (A and B and C) = probability of independent events A and B and C occurring in sequence

P_A = probability of event A

Mutually Exclusive Events

$$P (A \text{ or } B) = P_A + P_B$$

(2.4)

P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

P_A = probability of event A

Conditional Probability

$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$
(2.5)

P(A|D) = probability of event A given event D

P(A) = probability of event A occurring

 $P(\sim A)$ = probability of event A not occurring

 $P(D|\sim A)$ = probability of event D given event A did not occur

3.0 Plane Geometry

Circle Circumference = $2 \pi r$ (3.1) Area = π r²

Triangle (3.6)		В
Area = ½ bh	(3.11)	a h c
$a^{2} = b^{2} + c^{2} - 2bc \cdot cos \angle A$ $b^{2} = a^{2} + c^{2} - 2ac \cdot cos \angle B$ $c^{2} = a^{2} + b^{2} - 2ab \cdot cos \angle C$	(3.13)	C b A

4.0 Solid Geometry

Pyramid Volume = $\frac{Ah}{3}$ h (4.7)A = area of base

5.0 Constants

6.0 Conversions

Mass/Weight (6.1)

1 kg = $2.205 \text{ lb}_{\text{m}}$ 1 slug = $32.2 \text{ lb}_{\text{m}}$ 1 ton = 2000 lb1 lb = 16 oz

Length (6.2)

1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft

Time (6.3)

1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d

Area (6.4)

1 acre = 4047 m^2 = $43,560 \text{ ft}^2$ = 0.00156 mi^2

Volume (6.5)

1L = 0.264 gal = 0.0353 ft³ = 33.8 fl oz 1mL = 1 cm³ = 1 cc

Temperature <u>Unit</u> Equivalents (6.6)

1 K = 1 °C = 1.8 °F = 1.8 °R

Force (6.7)

1 N = 0.225 lb1 kip = 1,000 lb

Pressure (6.8)

1 atm = 1.01325 bar = 33.9 ft H_2O = 29.92 in. Hg= 760 mm Hg= 101,325 Pa = 14.7 psi 1psi = 2.31 ft of H_2O

Power (6.9)

1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lb_f/s 1 hp = 550 ft·lb/sec

Energy (6.10)

1 J = 0.239 cal= $9.48 \times 10^{-4} \text{ Btu}$ = $0.7376 \text{ ft} \cdot \text{lb}_f$ 1kW h = 3,600,000 J

Rotational Speed (6.11)

1 Hz = 2π rad/sec

=60 rpm

7.0 Defined Units

1 J $= 1 \text{ N} \cdot \text{m}$ $= 1 \text{ kg·m} / \text{s}^2$ 1 N $= 1 N / m^{2}$ 1 Pa = 1 W/A1 V 1 W = 1 J/s1Ω = 1 V/A $= 1 s^{-1}$ 1 Hz 1 F $= 1 A \cdot s / V$ 1 H $= 1 \text{ V} \cdot \text{s} / \text{V}$

8.0 SI Prefixes

Numbers Less Than One							
Power of 10	Prefix	Abbreviation					
10 ⁻¹	deci-	d					
10 ⁻²	centi-	С					
10 ⁻³	milli-	m					
10 ⁻⁶	micro-	μ					
10 ⁻⁹	nano-	n					
10 ⁻¹²	pico-	р					
10 ⁻¹⁵	femto-	f					
10 ⁻¹⁸	atto-	а					
10 ⁻²¹	zepto-	Z					
10 ⁻²⁴	yocto-	У					

Numbers Greater Than One							
Power of 10	Prefix	Abbreviation					
10 ¹	deca-	da					
10 ²	hecto-	h					
10 ³	kilo-	k					
10 ⁶	Mega-	M					
10 ⁹	Giga-	G					
10 ¹²	Tera-	Т					
10 ¹⁵	Peta-	Р					
10 ¹⁸	Exa-	Е					
10 ²¹	Zetta-	Z					
10 ²⁴	Yotta-	Y					

9.0 Equations

Mass and Weight

 $m = VD_m \qquad (9.1)$ $W = mg \qquad (9.2)$ $W = VD_w \qquad (9.3)$

V = volume

D_m = mass density

m = mass

D_w = weight density

W = weight

g = acceleration due to gravity

Temperature

 $T_K = T_C + 273$ (9.4)

 $T_R = T_F + 460$ (9.5)

 $T_F = \frac{9}{5} T_c + 32$ (9.6)

 T_K = temperature in Kelvin

 T_C = temperature in Celsius

 T_R = temperature in Rankin

 T_F = temperature in Fahrenheit

Force and Moment

F = ma (9.7a) $M = Fd_{\perp}$ (9.7b)

F = force

m = mass

a = acceleration

M = moment

d_⊥= perpendicular distance

Equations of Static Equilibrium

 $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M_P = 0$ (9.8)

 F_x = force in the x-direction F_y = force in the y-direction M_P = moment about point P

9.0 Equations (Continued)

Energy: Work

 $W=F_{\parallel} \cdot \, \boldsymbol{d}$

(9.9)

W = work

 F_{\parallel} = force parallel to direction of displacement

d = displacement

Power

$$P = \frac{E}{t} = \frac{W}{t}$$

(9.10)

$$P = \tau \omega$$

(9.11)

P = power

E = energy

W = work

t = time

 τ = torque

 ω = angular velocity

Efficiency

Efficiency (%) = $\frac{P_{out}}{P_{in}} \cdot 100\%$ (9.12)

 P_{out} = useful power output P_{in} = total power input

Energy: Potential

U = mgh

(9.13)

U = potential energy

m =mass

g = acceleration due to gravity

h = height

Energy: Kinetic

$$K = \frac{1}{2} mv^2$$

(9.14)

K = kinetic energy

m = mass

v = velocity

Energy: Thermal

 $\Delta Q = mc\Delta T$

(9.15)

 ΔQ = change in thermal energy

m = mass

c = specific heat

 ΔT = change in temperature

Fluid Mechanics

$$p = \frac{F}{\Delta}$$

$$\frac{V_1}{T_4} = \frac{V_2}{T_2}$$
 (Charles' Law) (9.

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 (Gay-Lussanc's Law) (9.18)

$$p_1V_1 = p_2V_2$$
 (Boyle's Law) (9.19)

$$Q = Av$$

(9.20)

$$A_1v_1 = A_2v_2$$

(9.21)

$$P = Qp$$

absolute pressure = gauge pressure + atmospheric pressure (9.23)

p = absolute pressure

F = force

A = area

V = volume

T = absolute temperature

Q = flow rate

v = flow velocity

P = power

Mechanics

$$\bar{s} = \frac{d}{t}$$

(9.24)

$$\bar{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$$

(9.25)

$$a = \frac{v_f - v_i}{t}$$

(9.26)

$$X = \frac{v_i^2 \sin(2\theta)}{100}$$

(9.27)

$$v = v_i + at$$

$$v = v_i + a$$

(9.28)

$$d = d_i + v_i t + \frac{1}{2}at^2$$

(9.29)

$$v^2 = v_i^2 + 2a(d - d_i)$$

(9.30)

$$\tau = dFsin\theta$$

(9.31)

\overline{s} = average speed

 $\bar{\mathbf{v}}$ = average velocity

v = velocity

 v_i = initial velocity (t =0)

a = acceleration

X = range

t = time

 $\Delta \mathbf{d}$ = change in displacement

d = distance

 d_i = initial distance (t=0)

g = acceleration due to gravity

 θ = angle

 τ = torque

F = force

Electricity

Ohm's Law

$$V = IR$$

(9.32)

$$P = IV$$

(9.33)

$$R_T \text{ (series)} = R_1 + R_2 + \dots + R_n$$
 (9.34)

$$R_T$$
 (parallel) = $\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}$ (9.35)

Kirchhoff's Current Law

$$I_T = I_1 + I_2 + \cdots + I_n$$

or
$$I_T = \sum_{k=1}^{n} I_k$$
 (9.36)

Kirchhoff's Voltage Law

$$V_T = V_1 + V_2 + \cdots + V_n$$

or
$$V_T = \sum_{k=1}^{n} V_k$$
 (9.37)

V = voltage

 V_T = total voltage

I = current

 I_T = total current

R = resistance

R_T = total resistance

P = power

Thermodynamics

 $P = Q' = AU\Delta T$

(9.38)

$$P = Q' = \frac{\Delta Q}{\Delta t}$$

(9.39)

$$U = \frac{1}{R} = \frac{k}{l}$$

(9.40)

$$P = \frac{kA\Delta T}{L}$$

(9.41)

$$\mathsf{A}_1\mathsf{v}_1=\mathsf{A}_2\mathsf{v}_2$$

(9.42)

$$k = \frac{PL}{\Delta \wedge T}$$

(9.44)

(9.43)

P = rate of heat transfer

Q = thermal energy

 $P_{net} = \sigma Ae(T_2^4 - T_1^4)$

A = area of thermal conductivity

U = coefficient of heat conductivity (U-factor)

 ΔT = change in temperature

 Δt = change in time

R = resistance to heat flow (R-value)

k = thermal conductivity

v = velocity

 P_{net} = net power radiated

 $\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$

e = emissivity constant

L = thickness

 T_1 , T_2 = temperature at time 1, time 2

10.0 Section Properties

Moment of Inertia

$$I_{XX} = \frac{bh^3}{12}$$

(10.1)

I_{xx} = moment of inertia of a rectangular section about x axis

Complex Shapes Centroid

$$\overline{x} = \frac{\sum x_i A_i}{\sum A_i}$$
 and $\overline{y} = \frac{\sum y_i A_i}{\sum A_i}$

(10.2)

 $\overline{x} = x$ -distance to the centroid

 $\overline{y} = y$ -distance to the centroid

 $x_i = x$ distance to centroid of shape i

 $y_i = y$ distance to centroid of shape i

A_i = Area of shape i

Rectangle Centroid

$$\bar{x} = \frac{b}{2}$$
 and $\bar{y} = \frac{h}{2}$

Right Triangle Centroid

$$\bar{x} = \frac{b}{3}$$
 and $\bar{y} = \frac{h}{3}$

Semi-circle Centroid

$$\bar{x} = r$$
 and $\bar{y} = \frac{4r}{3\pi}$ (10.5)

 \bar{y}

 $\overline{x} = x$ -distance to the centroid

 $\bar{y} = y$ -distance to the centroid

11.0 Material

Stress (axial)

$$\sigma = \frac{F}{A} \tag{11.1}$$

 $\sigma = stress$

F = axial force

A = cross-sectional area

Strain (axial)

$$\varepsilon = \frac{\delta}{L_0}$$

(11.2)

 $\varepsilon = strain$

 L_0 = original length

 δ = change in length

Modulus of Elasticity

$$E = \frac{\sigma}{\epsilon}$$

(11.3)

$$\mathsf{E} = \frac{(\mathsf{F}_2 - \mathsf{F}_1) \mathsf{L}_0}{(\delta_2 - \delta_1) \mathsf{A}} \tag{11.4}$$

E = modulus of elasticity

 σ = stress

 $\varepsilon = strain$

A = cross-sectional area

F = axial force

 δ = deformation

12.0 Structural Analysis

Deformation: Axial

$$\delta = \frac{FL_0}{AE}$$

(12.13)

 δ = deformation

F = axial force

 L_0 = original length

A = cross-sectional area

E = modulus of elasticity

Truss Analysis

2J = M + R

(12.14)

J = number of joints

M =number of members

R = number of reaction forces

13.0 Simple Machines

Mechanical Advantage (MA)

$$IMA = \frac{D_E}{D_R} \qquad (13.1) \qquad AMA = \frac{F_R}{F_E} \qquad (13.2)$$

% Efficiency=
$$\left(\frac{AMA}{IMA}\right)$$
 100 (13.3)

IMA = ideal mechanical advantage AMA = actual mechanical advantage

 D_E = effort distance D_R = resistance distance F_E = effort force F_R = resistance force

Pulley Systems

IMA = total number of strands of a single string supporting the resistance (13.4)

$$IMA = \frac{D_E \text{ (string pulled)}}{D_D \text{ (resistance lifted)}}$$
 (13.5)

Inclined Plane

$$IMA = \frac{L}{H} \quad (13.6)$$

Wedge

IMA=
$$\frac{L}{H}$$
 (13.7)

Screw

$$IMA = \frac{C}{Pitch}$$
 (13.8)

$$Pitch = \frac{1}{TDI}$$
 (13.9)

r = radius Pitch = distance between

threads TPI = threads per inch

Compound Machines

 $MA_{TOTAL} = (MA_1) (MA_2) (MA_3) \dots$ (13.10)

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

$$GR = \frac{N_{out}}{N_{in}} = \frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}} \qquad (13.11)$$

$$\frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}} \text{ (pulleys)}$$
 (13.12)

Compound Gears

GR = gear ratio

 ω_{in} = angular velocity - driver

 ω_{out} = angular velocity - driven

 N_{in} = number of teeth - driver

N_{out} = number of teeth - driven

din = diameter - driver

d_{out} = diameter - driven

 τ_{in} = torque - driver

 τ_{out} = torque - driven

14.0 Structural Design

Steel Beam Design: Shear

$$V_a \le \frac{V_n}{\Omega_V}$$

$$V_n = 0.6F_v A_w$$
 (14.2)

V_a = internal shear force

 V_n = nominal shear strength

 $\Omega_v = 1.5 = factor of safety for shear$

 F_v = yield stress

 $A_w =$ area of web

 $\frac{v_n}{a}$ = allowable shear strength

15.0 Storm Water Runoff

Storm Water Drainage

$$Q = C_f CiA \tag{15.1}$$

$$C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$$
 (15.2)

Q = peak storm water runoff rate (ft³/s)

C_f = runoff coefficient adjustment factor

C = runoff coefficient

i = rainfall intensity (in./h)

A = drainage area (acres)

Runoff Coefficient Adjustment Factor				
Return				
Period Cf				
1, 2, 5, 10	1.0			
25	1.1			
50 1.2				
100	1.25			

Steel Beam Design: Moment

$$M_a \le \frac{M_n}{\Omega_b}$$
 (14.3)

$$M_n = F_v Z_x \tag{14.4}$$

M_a = internal bending moment

 M_n = nominal moment strength

 $\Omega_b = 1.67 = factor of safety for bending moment$

 F_v = yield stress

Forested

Asphalt

Z_x = plastic section modulus about neutral axis

Rational Method Runoff Coefficients

0.059 - 0.2

0.7-0.95

 $\frac{M_n}{\Omega_b}$ = allowable bending strength

Categorized by Surface

Spread Footing Design

 $q_{net} = q_{allowable} - p_{footing}$ (14.5)

 $p_{\text{footing}} = t_{\text{footing}} \cdot 150 \frac{\text{lb}}{\text{ft}^3} \qquad (14.6)$

$$q = \frac{P}{\Delta} \tag{14.7}$$

q_{net} = net allowable soil bearing pressure

q_{allowable} = total allowable soil bearing pressure

p_{footing} = soil bearing pressure due to footing weight

 $t_{footing}$ = thickness of footing

q = soil bearing pressure

P = column load applied

A = area of footing

16.0 Water Supply

Hazen-Williams Formula

$$h_f = \frac{10.44 LQ^{1.85}}{C^{1.85} d^{4.8655}}$$
 (16.1)

 h_f = head loss due to friction (ft of H_2O)

L = length of pipe (ft)

Q = water flow rate (gpm)

C = Hazen-Williams constant

d = diameter of pipe (in.)

Dynamic Head

17.0 Heat Loss/Gain

Heat Loss/Gain

 $Q' = AU\Delta T (17.1)$

$$U = \frac{1}{R} \tag{17.2}$$

Q = thermal energy

A = area of thermal conductivity

U = coefficient of heat

conductivity (U-factor)

 ΔT = change in temperature

R = resistance to heat flow (R-value)

18.0 Hazen-Williams Constants

Pipe Material	Typical Range	Clean, New Pipe	Typical Design Value
Cast Iron and Wrought Iron	80 - 150	130	100
Copper, Glass or Brass	120 - 150	140	130
Cement lined Steel or Iron		150	140
Plastic PVC or ABS	120 - 150	140	130
Steel, welded and seamless or interior riveted	80-150	140	100

19.0 Equivalent Length of (Generic) Fittings

Constant Figure		Pipe Size										
Screwed Fitti	ngs	1/4	3/8	1/2	3/4	1	1 1/4	1 ½	2	2 ½	3	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Elbows	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5
Tana	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
Tees	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Return Bends	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
v. 1	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
Valves	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0

	ittin en									Pipe	Size							
Flanged F	ittings	1/2	3/4	1	1 1/4	1 ½	2	2 ½	3	4	5	6	8	10	12	14	16	18
	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
1662	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Bends	Long radius 180 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
Values	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Valves	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design

$T = 0.693 (R_A + 2R_B)C$	(20.1)
$f = \frac{1}{T}$	(20.2)
$duty-cycle = \frac{(R_A + R_B)}{(R_A + 2R_B)} \cdot 100\%$	(20.3)
$T = period$ $f = frequency$ $R_A = resistance A$ $R_B = resistance B$ $C = capacitance$	

21.B Resistor Color Code

22.0 Speeds and Feeds

$N = \frac{CS(12\frac{in.}{ft})}{\pi d}$	(22.1)
$f_m = f_t \cdot n_t \cdot N$	(22.2)
Plunge Rate = ½-f _r N = spindle speed CS = cutting speed d = diameter (in.) f _m = feed rate (in./n f _t = feed (in./tooth/r n _t = number of teet	(rpm) d (in./min) nin) ev)

21.A Boolean Algebra

Boolean Theorems				
X• 0 = 0	(21.1)			
X•1 = X	(21.2)			
X• X =X	(21.3)			
X • X=0	(21.4)			
X + 0 = X	(21.5)			
X + 1 = 1	(21.6)			
X + X = X	(21.7)			
$X + \overline{X} = 1$	(21.8)			
$\overline{\overline{X}} = X$	(21.9)			

Consensus The	orems
$X + \overline{X}Y = X + Y$	(21.16)
$X + \overline{X}\overline{Y} = X + \overline{Y}$	(21.17)
$\overline{X} + XY = \overline{X} + Y$	(21.18)
$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$	(21.19)
DeMorgan's Th	eorems
VO. 17 V	(- ()
$\overline{XY} = X + Y$	(21.20)

Commutative Law

(21.10)

L	X+Y=Y+X	(21.11)
Associative I	Law	
X(YZ) = (XY)Z	7	(21.12)
X + (Y + Z) =	(X + Y) + Z	(21.13)

 $X \bullet Y = Y \bullet X$

Distributive Law	
X(Y+Z) = XY + XZ	(21.14)
(X+Y)(W+Z) = XW+XZ+YW+YZ	(21.15)

21.C Capacitor Code

20%

10%

5%

Code	Tolerance
Α	±0.05%
В	±0.1%
С	±0.25%
D	±0.5%
F	±1%
G	±2%
J	±5%
К	±10%
M or NONE	±20%
N	±30%
Q	-10%, +30%
S	-20%, +50%
Т	-10%, +50%
Z	-20%, +80%

23.0 G&M Codes

G00 = Rapid Traverse	(23.1)
G01 = Straight Line Interpolation	(23.2)
G02 = Circular Interpolation (clockwise)	(23.3)
G03 = Circular Interpolation (c-clockwise)	(23.4)
G04 = Dwell (wait)	(23.5)
G05 = Pause for user intervention	(23.6)
G20 = Inch programming units	(23.7)
G21 = Millimeter programming units	(23.8)
G80 = Canned cycle cancel	(23.9)
G81 = Drilling cycle	(23.10)
G82 = Drilling cycle with dwell	(23.11)
G90 = Absolute Coordinates	(23.12)
G91 = Relative Coordinates	(23.13)
M00 = Pause	(23.14)
M01 = Optional stop	(23.15)
M02 = End of program	(23.16)
M03 = Spindle on	(23.17)
M05 = Spindle off	(23.18)
M06 = Tool change	(23.19)
M08 = Accessory # 1 on	(23.20)
M09 = Accessory # 1 off	(23.21)
M10 = Accessory # 2 on	(23.22)
M11 = Accessory # 2 off	(23.23)
M30 = Program end and reset	(23.24)
M47 = Rewind	(23.25)

24.0 Aerospace

Forces of Flight

$$C_D = \frac{2D}{A\rho v^2} \tag{24.1}$$

$$R_e = \frac{\rho vI}{\mu}$$
 (24.2)

$$C_L = \frac{2L}{A\rho v^2}$$
 (24.3)

$$M = Fd \tag{24.4}$$

 C_L = coefficient of lift C_D = coefficient of drag

L = lift

D = drag

A = wing area

 ρ = density

 R_e = Reynolds number

v = velocity

I = length of fluid travel

 μ = fluid viscosity

F = force

m = mass

g = acceleration due to gravity

 $\dot{M} = moment$

d = moment arm (distance from datum perpendicular to F)

Propulsion

$$F_N = W(v_j - v_o)$$
 (24.5)

$$I = F_{ave} \Delta t \tag{24.6}$$

$$F_{net} = F_{avg} - F_g \qquad (24.7)$$

$$a = \frac{v_f}{\Delta t}$$
 (24.8)

 F_N = net thrust

W = air mass flow

vo = flight velocity

 v_i = jet velocity

I = total impulse

F_{ave} = average thrust force

 Δt = change in time (thrust duration)

 F_{net} = net force

 F_{avg} = average force

 F_g = force of gravity

v_f = final velocity

a = acceleration

 Δt = change in time (thrust

duration)

NOTE: F_{ave} and F_{avg} are easily confused.

Orbital Mechanics

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$
 (24.13)

$$T = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$$
 (24.14)

$$F = \frac{GMm}{r^2}$$
 (24.15)

e = eccentricity

b = semi-minor axis

a =semi-major axis

T = orbital period

a = semi-major axis

 μ = gravitational parameter

F = force of gravity between two bodies

G = universal gravitation constant

M = mass of central body

m = mass of orbiting object

r = distance between center of two objects

Bernoulli's Law

$$\left(P_{S} + \frac{\rho v^{2}}{2}\right)_{1} = \left(P_{S} + \frac{\rho v^{2}}{2}\right)_{2}$$
 (23.16)

Ps = static pressure

v = velocity

 ρ = density

Atmosphere Parameters

T = 15.04 - 0.00649h

(24.17)

$$p = 101.29 \left[\frac{(T + 273.1)}{288.08} \right]^{5.256}$$
 (24.18)

$$\rho = \frac{p}{0.2869(T + 273.1)} \tag{24.19}$$

T = temperature

h = height

p = pressure

 ρ = density

Energy

$$K = \frac{1}{2} mv^2$$
 (24.9)

$$U = \frac{-GMm}{R}$$
 (24.10)

$$E = U + K = -\frac{GMm}{2R}$$
 (24.11)

$$G = 6.67 \times 10^{-11} \frac{m^3}{kg \times s^2}$$
 (24.12)

K = kinetic energy

m =mass

v = velocity

U = gravitational potential energy

G = universal gravitation constant

M = mass of central body

m = mass of orbiting object

R = Distance center main body to center of orbiting object

E = Total Energy of an orbit

25.0 USCS Soil Classification Chart

